哺乳动物西罗莫司靶蛋白信号通路在氯胺酮抗抑郁作用中的研究进展

孙琳, 孙宏伟*,宋玉萍, 王艳郁, 姜能志

中国药学杂志 ›› 2015, Vol. 50 ›› Issue (8) : 653-657.

PDF(1047 KB)
PDF(1047 KB)
中国药学杂志 ›› 2015, Vol. 50 ›› Issue (8) : 653-657. DOI: 10.11669/cpj.2015.08.001
综述

哺乳动物西罗莫司靶蛋白信号通路在氯胺酮抗抑郁作用中的研究进展

  • 孙琳, 孙宏伟* , 宋玉萍, 王艳郁, 姜能志
作者信息 +

Research Progress of the mTOR Signaling Pathway Underlying the Antidepressant Actions of Ketamine

  • SUN Lin, SUN Hong-wei*, SONG Yu-ping, WANG Yan-yu, JIANG Neng-zhi
Author information +
文章历史 +

摘要

抑郁症严重危害人类身心健康。目前,抗抑郁药物存在初始治疗有效率低、 起效慢、 无法快速缓解抑郁症患者的痛苦等缺陷。研究发现,氯胺酮对难治型抑郁症患者有快速抗抑郁作用。动物模型的分子生物学和细胞学研究表明,氯胺酮通过激活哺乳动物西罗莫司靶蛋白(mammalian target of rapamycin,mTOR)信号通路来激发哺乳动物西罗莫司靶蛋白及其下游分子的翻译起始过程,从而增加前额叶皮层棘突突触的成熟度和数量,达到抑郁症治疗的目的。这些研究提示哺乳动物西罗莫司靶蛋白信号通路在氯胺酮快速抗抑郁作用中发挥重要作用,其在探索新型高效抗抑郁药物中具有巨大的潜力。

Abstract

Depression is a common, serious psychiatric disease. Despite a wide range of antidepressants available, only one third of the patients show significant mood improvement in response to an initial antidepressant treatment. Moreover, there is a time-lag of weeks to months with currently available medications; the suffering of patients could not be relieved quickly. Ketamine was found to produce rapid antidepressant responses in treatment resistant major depressive disorder patients. Molecular and cellular studies in rodent models demonstrated that ketamine stimulates mammalian target of rapamycin (mTOR) signaling and increases the initial translation of mTOR and downstream molecules, these effects of ketamine are accompanied by increasing levels of maturity and quantity of spine synapses in the prefrontal cortex. Ketamine was found to produce rapid antidepressant responses in treatment of depression. These studies identify the characterization of the mTOR signaling pathway in depression and its action in response to antidepressants shows great potential for the identification of new therapeutic targets for the development of antidepressant drugs.

关键词

抑郁症 / 氯胺酮 / 哺乳动物西罗莫司靶蛋白 / 突触生成

Key words

depression / ketamine / mTOR / synaptogenesis

引用本文

导出引用
孙琳, 孙宏伟*,宋玉萍, 王艳郁, 姜能志. 哺乳动物西罗莫司靶蛋白信号通路在氯胺酮抗抑郁作用中的研究进展[J]. 中国药学杂志, 2015, 50(8): 653-657 https://doi.org/10.11669/cpj.2015.08.001
SUN Lin, SUN Hong-wei*, SONG Yu-ping, WANG Yan-yu, JIANG Neng-zhi. Research Progress of the mTOR Signaling Pathway Underlying the Antidepressant Actions of Ketamine[J]. Chinese Pharmaceutical Journal, 2015, 50(8): 653-657 https://doi.org/10.11669/cpj.2015.08.001
中图分类号: R961   

参考文献

[1] KESSLER R C, BERGLUND P, DEMLER O, et al. The epidemiology of major depressive disorder:Results from the National Comorbidity Survey Replication (NCS-R) . JAMA, 2003, 289(23):3095-3105.[2] KRISHNAN V, NESLER E J. The molecular neurobiology of depression . Nature, 2008, 455(7215):894-902.[3] KULKARNI S K,DHIR A. Current investigational drugs for major depression . Expert Opin Investig Drugs, 2009, 18(6):767-788.[4] WARNER-SCHMIDT J L, CHEN E Y, ZHANG X, et al. A role for p11 in the antidepressant action of brain-derived neurotrophic factor . Biol Psychiatry, 2010, 68(6):528-535.[5] TRIVEDI M H, RUSH A J, WISNIEWSKI S R, et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D:Implications for clinical practice .Am J Psychiatry, 2006, 163(1):28-40.[6] MARICOURTD P, JAY T P, GONCALVES, et al. Ketamine′s antidepressant effect:Focus on ketamine mechanisms of action . Encephale, 2014, 40(1):48-55.[7] CADDY C, GIAROLI G, WHITE T P, et al. Ketamine as the prototype glutamatergic antidepressant:Pharmacodynamic actions, and a systematic review and meta-analysis of efficacy . Ther Adv Psychopharmacol, 2014, 4(2):75-99.[8] MITCHELL A J. Two-week delay in onset of action of antidepressants:New evidence . Br J Psychiatry, 2006, 188:105-110.[9] COLLINGRIDGE G L,BLISS T V. Memories of NMDA receptors and LTP . Trends Neurosci, 1995, 18(2):54-60.[10] SOFIA R D,HARAKAL J J. Evaluation of ketamine HCl for anti-depressant activity . Arch Int Pharmacodyn Ther, 1975, 214(1):68-74.[11] KRYSTAL J H, KARPER L P, SEIBYL J P, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses .Arch Gen Psychiatry, 1994, 51(3):199-214.[12] STRAYER R J,NELSON L S. Adverse events associated with ketamine for procedural sedation in adults . Am J Emerg Med, 2008, 26(9):985-1028.[13] GABLE R. Acute toxic effects of club drugs .J Psychoactive Drugs, 2004, 36(3):303-315.[14] LAIDLER K A J.The rise of club drugs in a heroin society:the case of Hong Kong .Subst Use Misuse, 2005, 40(9-10):1257-1278.[15] LANKENAU S E, SANDERS B, BLOOM J J, et al. First injection of ketamine among young injection drug users (IDUs) in three US cities .Drug Alcohol Depend, 2007, 87(2-3):183-193.[16] HAN Z L, ZHANG N H, ZHANG J B, et al. Contrast observation of sertraline, fluoxetine and paroxetine for the treatment of depression . Chin J Hosp Pharm(中国医院药学杂志), 2002, 22(5):293-295.[17] PARK S W, LEE J G, SEO M K, et al. Differential effects of antidepressant drugs on mTOR signalling in rat hippocampal neurons . Int J Neuropsychopharmacol, 2014, 17(11):1831-1846.[18] HU J P, ZHANG J L, SHENG Y X, et al. S (+) - ketamine hydrochloride in vivo pharmacokinetic study of rats . Chin Pharm J(中国药学杂志), 2009, 44(7):532-537.[19] ZARATE C J, SINGH J,HK M. Cellular plasticity cascades:Targets for the development of novel therapeutics for bipolar disorder . Biol Psychiatry, 2006, 59(11):1006-1020.[20] CLEMENS J, NIMMO W S, GRANT I S. Bioavailability, pharmacokinetics, and analgesic activity of ketamine in humans . J Pharm Sci, 1982, 71(5):539-542.[21] MACHADO-VIEIRA R, SALVADORE G, DIAZGRANADOS N, et al. Ketamine and the next generation of antidepressants with a rapid onset of action . Pharmacol Ther, 2009, 123(2):143-150.[22] MESSER M, HALLER I V, LARSON P, et al. The use of a series of ketamine infusions in two patients with treatment-resistant depression . J Neuropsychiatry Clin Neurosci, 2010, 22(4):442-445.[23] LI N, LEE B, LIU R J, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists.Science, 2010, 329(5994):959-964.[24] DUMAN R S, AGHAJANIAN G K.Synaptic dysfunction in depression:Potential therapeutic targets . Science, 2012, 338(6103):68-72.[25] HOLTMAAT A, SVOBODA K. Experience-dependent structural synaptic plasticity in the mammalian brain . Nat Rev Neurosci, 2009, 10(9):647-658.[26] KESSELS H W, MALINOW R. Synaptic AMPA receptor plasticity and behavior . Neuron, 2009, 61(3):340-350.[27] YOSHIHARA Y, DE R M, MULLER D. Dendritic spine formation and stabilization . Curr Opin Neurobiol, 2009, 19(2):146-153.[28] GEORGE M S, NAHAS Z, MOLLOY M, et al. A controlled trial of daily left prefrontal cortex TMS for treating depression . Biol Psychiatry, 2000, 48(10):962-970.[29] RADLEY J J, ROCHER A B, MILLER M, et al. Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex . Cereb Cortex, 2006, 16(3):313-320.[30] RADLEY J J, ROCHER A B, RODRIGUEZ A, et al. Repeated stress alters dendritic spine morphology in the rat medial prefrontal cortex . J Comp Neurol, 2008, 507(1):1141-1150.[31] VILGIS V, CHEN J, SILK T J, et al. Frontoparietal function in young people with dysthymic disorder (DSM-5:Persistent depressive disorder) during spatial working memory . J Affect Disord, 2014, 160:34-42.[32] CHANDRAN A, IYO A H, JERNIGAN C S, et al. Reduced phosphorylation of the mTOR signaling pathway components in the amygdala of rats exposed to chronic stress . Prog Neuropsychopharmacol Biol Psychiatry, 2013, 40:240-244.[33] HAY N,SONENBERG N. Upstream and downstream of Mtor . Genes Dev, 2004, 18(16):1926-1945.[34] BEEVERS C S, LI F, LIU L, et al. Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells . Int J Cancer, 2006, 119(4):757-764.[35] CORNU M, ALBERT V,HALL M N. mTOR in aging, metabolism, and cancer . Curr Opin Genet Dev, 2013, 23(1):53-62.[36] ZONCU R, EFEYAN A,SABATINI D M. mTOR:From growth signal integration to cancer, diabetes and ageing . Nat Rev Mol Cell Biol, 2011, 12(1):21-35.[37] CHEN H J, QU Y, MU D Z. The progress of study on the biological function of mTOR pathway .Chemistry of Life(生命的化学), 2010, 30(4):555-561.[38] MAENG S, ZARATE C A, DU J J, et al. Cellular mechanisms underlying the antidepressant effects of ketamine:Role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors . Biol Psychiatry, 2008, 63(4):349-352.[39] ZHAO J, BAO A M, QI X R, et al. Gene expression of GABA and glutamate pathway markers in the prefrontal cortex of non-suicidal elderly depressed patients . J Affect Disord, 2012, 138(3):494-502.[40] MOGHADDAM B, ADAMS B, VERMA A, et al. Activation of glutamatergic neurotransmission by ketamine:A novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex . J Neurosci, 1997, 17(8):2921-2927.[41] HOEFFER C A, KLANN E. mTOR signaling:At the crossroads of plasticity, memory and disease . Trends Neurosci, 2010, 33(2):67-75.[42] LIVINGSTONE M, ATAS E, MELLER A, et al. Mechanisms governing the control of mRNA translation . Phys Biol, 2010, 7(2):021001.[43] PILC A, CHAKI S, NOWAK G, et al. Mood disorders:Regulation by metabotropic glutamate receptors . Biochem Pharmacol, 2008, 75(5):997-1006.[44] JOURDI H, HSU Y T, ZHOU M, et al. Positive AMPA receptor modulation rapidly stimulates BDNF release and increases dendritic mRNA translation . J Neurosci, 2009, 29(27):8688-8697.[45] TAKEI N, INAMURA N, KAWAMURA M, et al. Brain-derived neurotrophic factor induces mammalian target of rapamycin-dependent local activation of translation machinery and protein synthesis in neuronal dendrites . J Neurosci, 2004, 24(44):9760-9769.[46] SLIPCZUK L, BEKINSCHTEIN P, KATCHE C, et al. BDNF activates mTOR to regulate GluR1 expression required for memory formation . PLoS One, 2009, 4(6):6007.[47] SHIN I J, SON S U, PARK H, et al. Preclinical evidence of rapid-onset antidepressant-like effect in Radix Polygalae extract . PLoS One, 2014, 9(2):88617.[48] WALKER A K, BUDAC D P, BISULCO S, et al. NMDA Receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice . Neuropsychopharmacology, 2013, 38(9):1609-1616.[49] LAUTERBACH E C. An extension of hypotheses regarding rapid-acting, treatment-refractory, and conventional antidepressant activity of dextromethorphan and dextrorphan . Med Hypotheses, 2011, 78(6):693-702.[50] MANTOVANI M, PERTILE R, CALIXTO J B, et al. Melatonin exerts an antidepressant-like effect in the tail suspension test in mice:Evidence for involvement of N-methyl-D-aspartate receptors and the L-arginine-nitric oxide pathway . Neurosci Lett, 2003, 343(1):1-4.[51] SUN L, LI Q, LI Q, et al. Chronic ketamine exposure induces permanent impairment of brain functions in adolescent cynomolgus monkeys . Addict Biol, 2014, 19(2):185-194.[52] SUN L, LAM W P, WONG Y W, et al. Permanent deficits in brain functions caused by long-term ketamine treatment in mice . Hum Exp Toxicol, 2010, 30(9):1287-1296.

基金

山东省优秀中青年科学家科研奖励基金项目(BS2014YY043);潍坊医学院科技创新研究基金重点项目(K1301011)

PDF(1047 KB)

Accesses

Citation

Detail

段落导航
相关文章

/